PH1 Mark Scheme - January 2011

Question			Marking details	Marks Available
3	(a)		l or $(v t)$ [accept v if stated dist travelled in 1 s] (1) [NB free electrons not required to be labelled] Number of free electrons $=n A v t[$ or $n A l]$ (1) Total change $=$ nAvte $[$ or nAle $]$ (1) $\left.I=\frac{n A v t e}{t} \text { with cancelling shown [or } \frac{n A l e}{t} \text {, where } \frac{l}{t}=v \text { shown }\right] \text { (1) }$	4
	(b)		$\begin{aligned} & 2.0=1.0 \times 10^{29} \times 1.7 \times 10^{-6} v \times 1.6 \times 10^{-19}(1) \text { [substitution] } \\ & v=7.4 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}((\text { unit) })(1) \end{aligned}$	2
	(c)		collisions [accept obstructions](1) between free electrons and copper atoms / ions / lattice (1) [accept: delocalised / moving / conducting electrons]	2
	(d)		$R=\frac{P}{I^{2}}\left[\text { or } P=I^{2} R\right](1) ; R=\frac{0.1}{4}[=0.025 \Omega](1)$ $\rho=\frac{0.025\left[\text { e.c.f.] } \times 1.7 \times 10^{-6}\right.}{2.5}(1)$ [manipulation i.e $\rho=\frac{R A}{l}$ or with figures] $\rho=1.7 \times 10^{-8} \Omega \mathrm{~m} . \text { (1) }$	4
	(e)		cross-sectional area smaller (1) n the same (1) resistivity the same (1)	3
				[15]
4.	(a)	(i) (ii)	To overcome the frictional / drag force or because the applied force is insufficient. $\begin{aligned} & \frac{1}{\text { gradient }} \text { attempted (1); Correct substitution, e.g. } \frac{3.0-0.5}{3.0}(1) \\ & m=0.8(3) \mathrm{kg}((\text { unit }))(1) \end{aligned}$	1 3
	(b)	(i)	A = contact force of surface on body [accept normal reaction](1) B = gravitational force of Earth on body (1) [accept: weight $/ \mathrm{mg}]$	2
		(ii)	Gravitation force of body (mass) (1) on Earth (1)	2
				[8]

Question			Marking details	Marks Available
5.		(i) (ii) (iii) (iv)	$\left[\pi \times 22^{2}\right](1)$ [accept $\left.\pi r^{2}\right] \times 14$ (1) $\left[=21287 \mathrm{~m}^{3} \mathrm{~s}^{-1}\right]$ [21 $287 \rightarrow 1$ mark] $\begin{aligned} & \text { mass every second }=1.2 \times 21000 \text { [or as calculated in (i)] } \\ & {[=25200] \mathrm{kg} \mathrm{~s}^{-1} } \end{aligned}$ Initial $E_{\mathrm{k} 1}=1 / 2 \times 25200 \times 14^{2}$ (1) e.c.f. from (ii) Final $E_{\mathrm{k} 2}=1 / 2 \times 25200 \times 14^{2}$ (1) e.c.f. from (ii) $\Delta E_{\mathrm{k}}=945 \times 10^{3} \mathrm{~J} \mathrm{~s}^{-1}(1)$ e.c.f. from $E_{\mathrm{k} 1}$ and $E_{\mathrm{k} 2}$ NB. "Solutions" based upon $1 / 2 m \times(14-11)^{2} \rightarrow 0$ Useful power available $=614250 \mathrm{~J} \mathrm{~s}^{-1}$ (1) e.c.f. from (iii) $N_{\text {turbines }}=\frac{1000 \times 10^{6}}{614250}[=1628](1)$	2 1 3 2 [8]
6	(a) (b)	(i) (ii) (iii) (iv)	Velocity $=\frac{\text { Displacement }}{\text { time }} /$ displacement per unit time $/$ rate of change of displacement [but not per unit time] $/ \frac{d s}{d t}$ with s defined] $v+1$ [or equiv] $t=\frac{s}{v}$ used [or by impl.](1) $\rightarrow t=\frac{12(1)}{15}[=8 \mathrm{~s}]$ $v+1=\frac{28}{8}$ (1) [allow e.c.f. from (i) only on $v-1$ or $1-v$] manipulation (1) $v=2.5 \mathrm{~m} \mathrm{~s}^{-1}(1)$ Alt 1: Distance moved by Stacey in $8 \mathrm{~s}=8 \mathrm{~m} \checkmark$ Distance moved by walkway in $8 \mathrm{~s}=28-8=20 \mathrm{~m} \checkmark$ Speed of walkway $=\frac{20}{8}=2.5 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$ Alt 2: Velocity of Stacey on walkway $=\frac{28}{8}=3.5 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$ Velocity of walkway $=3.5-1.0 \checkmark=2.5 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$ $5.0 \mathrm{~m} \mathrm{~s}^{-1}$ e.c.f. from (iii), i.e. ans $=2.5+$ (iii)	1 2 3 1 [8]

Question			Marking details	Marks Available
7.	(a)		Use of $\cos 70^{\circ}(1)$ $2 T \cos 70^{\circ}=800(1)[\rightarrow T=1170 \mathrm{~N}]$ [Accept mysterious division by 2 (b.o.d.)]	2
	(b)	(i)	Area under graph attempted or $1 / 2 F x$ or $1 / 2 k x^{2}$ (1) 240 J (1)	2
		(ii)	Initial energy stored in bow converted entirely to E_{k} of arrow (1) 240 e.c.f. $=1 / 250 \times 10^{-3} v^{2}(1)$ [subst] manipulation leading to $v=98 \mathrm{~m} \mathrm{~s}^{-1}$ shown. (1) [Final mark not available if incorrect E_{k} used]	3 2
	(c)	(i)	$\begin{aligned} & x=u t+1 / 2 a t^{2}(1) ; u=0(1) \\ & t=0.55 \mathrm{~s} \mathrm{[accept} 0.6 \mathrm{~s}](1) \end{aligned}$	
		(ii)	$\begin{aligned} & D=V_{\mathrm{H}} t \text { [or by imp.] (1) e.c.f. of } t \\ & D=98 \text { [or } 100] \times 0.55 \text { [or } 0.6] \text { [e.c.f.] } \therefore D=54 \mathrm{~m} \text { (1) } \end{aligned}$	
		(iii)	$v_{\text {vertical }}=u+a t$ and $u=0$ (1) [or equiv or by impl.] $v_{\mathrm{v}}=5.4 \mathrm{~m} \mathrm{~s}^{-1}(1)$ $v_{\text {resultant }}=\sqrt{5.4^{2}+98.0^{2}}(1)$ or $v^{2}=5.4^{2}+98.0^{2}$ $\begin{equation*} v_{\text {resultant }}=98.1 \mathrm{~m} \mathrm{~s}^{-1}(1) \tag{1} \end{equation*}$ Angle to horizontal [clearly identified] $=\sin ^{-1} \frac{5.4}{98.1}=3^{\circ}$ [Or equivalent correct application of other trig function]	5
	(d)		Greater [initial] force [or equiv.] required to pull the Turkish bow string [through a given distance] (1) [or more work / energy needed] Greater area under the Turkish bow curve (1) [leading to] more [elastic] potential energy stored (1). Arrows will leave Turkish bow with a greater speed / velocity (1) [Accept converse arguments]. [Alt to $2^{\text {nd }}$ marking point: linking to $1^{\text {st }}$ marking point \ldots. because gradient of graph greater for Turkish bow]	4
				[21]

